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We discuss our present knowledge of the flow and stability of helium I1 between 
concentric cylinders. The flow problem for helium I1 leads us to consider the 
formation of quantized vortices in the uniform rotation of helium I1 in an open 
bucket as well as quantized circulation states and vortices in a rotating annulus. We 
then consider how to treat the first appearance of vortices in the presence of shear, 
which allows us to characterize the basic flow which must be examined for stability. 
The results suggest an explanation for heretofore unexplained experiments. Future 
directions for research on the stability of helium I1 are suggested. 

1. Introduction 
1.1. Scope and purpose 

The stability and flow of helium I1 between concentric cylinders is an important and 
fundamental problem in fluid mechanics. It was first discussed by Chandrasekhar & 
Donnelly in 1957 a t  time when the modern theory of rotating superfluids was just 
beginning. Over the three decades since then there have been scattered studies, both 
theoretical and experimental, but it is safe to say that not much understanding of the 
problem has yet been achieved. The purpose of this article is to attempt to stimulate 
a new look at the problem. 

The early work on the stability of helium I1 was done with rotating cylinder 
viscometers for the same reason that early work on the classical problem was with 
viscometers: there was a need to clarify the nature of friction in the fluids under 
study, and to establish values of viscosity. A departure of the transmitted torque 
from its linear relationship with the angular velocity of one or other cylinder is taken 
as an indication of the onset of instability. The very first experiments of Mallock 
(1888, 1895) and Couette (1890) showed that in classical fluids there is a substantial 
difference in stability between rotating the inner or outer cylinder, with the latter 
arrangement being much more stable. We shall show that experiments by Donnelly 
(1959) and Heikkila & Hollis Hallett (1955) reveal that the extra stability of flow 
with the outer cylinder rotating found in the classical flow is not realized in helium 
11, and that the underlying mechanism for this instability needs to be understood. 
Other studies in helium I1 have been undertaken using second-sound absorption, 
which is a powerful tool for the detection of quantized vortices. 

On the theoretical side, the stability of the flow can be discussed only if the 
unperturbed flow is understood. Chandrasekhar & Donnelly (1957) and others since 
have assumed that the quantized vortices in the flow are dense enough to form a 
continuum. We shall examine the conditions for entry of vortices between concentric 
cylinders, a subject which has not previously been addressed except in the case of 
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uniform rotation. The technique used, the minimization of a certain free energy, has 
always been considered inapplicable in the presence of a shear flow. We shall 
demonstrate that it may, after all, be possible to use free-energy minimization owing 
to the special circumstances of the nature of Couette flow, that is, a combination of 
solid-body rotation and potential flow. 

The paper concludes with a discussion of future directions for research in this field. 
An early draft of this manuscript has stimulated some new studies which we shall 
describe briefly. 

1.2. Basic relationships and linear stability theory 

The coordinates for studying our problem are shown in figure 1. R, is the radius of 
the inner cylinder, R, the radius of the outer cylinder, and r is the distance to an 
arbitrary radius. The gap d = R, - R,, and the angular velocities of the cylinders are 
4, and 4,. The ratio of the length of the apparatus L to the gap width d is called the 
aspect ratio, 

where L may exceed the length h of one cylinder if guard cylinders are present. For 
a classical fluid in laminar flow the velocity distribution for infinite cylinders rotating 
a t  angular velocities 4, and 0, is 

r = Lid, (1.1) 

B 
r v = Ar+- - ,  (1.2) 

a combination of solid-body rotation and potential flow, where 

and 

where 

Ri4,-R:Q1 - --a,- 7, -P A =  1-72 
RE - Rf 

The vorticity o for this flow is given by curl v 

2[Ri 4, - R: 4,] 
Ri - R: o = 2 A =  

The torque G transmitted to a length h of one cylinder as a result of rotation of the 
other is given by 4 ~ 7 R ;  Ri h (4 ,  - 4,) 

Ri - R: 
G =  , 

where h is the length of the suspended cylinder and 7 is the viscosity of the fluid. 
The problem of the stability of viscous flow between concentric cylinders was first 

worked out by G. I. Taylor in 1923 in a well-known paper. Taylor’s work has 
attracted an enormous amount of interest in the 64 years since it appeared. 

The stability diagram for classical Couette flow with cylinders rotating in the same 
direction is shown in figure 2. The solid line shows the location of the onset of Taylor 
vortices and secondary flow. The upper dashed line corresponds to the location of 
potential flow, 4J4, = Ri/R:, and the lower dash-dot line corresponds to solid-body 
rotation Q1 = 4,. 

The potential-flow line also corresponds to the so-called Rayleigh criterion (cf. 
Chandrasekhar 1961) for the stability of an inviscid fluid which has the viscous fluid 
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FIQURE 1. Notation for discussion of flow between concentric cylinders. 

/ .  Potential flow 
,‘. /’.’ ’ ‘Solid-body rotation 
” 

W v  
FIQURE 2. Stability diagram for cylinders rotating in the same direction (schematic only). 

velocity distribution (equation (1.2)). Rayleigh’s criterion for instability, A 2 0, 
predicts that the flow should be stable below the dashed line and unstable above it. 
The difference between the solid line and the dashed line is the effect of viscosity on 
the stability of the flow. Note that the experimental results approach the Rayleigh 
criterion for large Reynolds numbers, as might be anticipated (see figures 10 and 12 
of Donnelly & Fultz 1960). The vortices which arise in unstable flow are very rich and 
complicated in structure, as can be appreciated from the data shown in figure 3. 

The Reynolds number and Taylor number of rotating-cylinder experiments have 
a number of definitions depending somewhat on radius ratio and personal preference 
(for details see Chandrasekhar 1961). We shall be referring here mostly to narrow-gap 
experiments, where the Reynolds number can be defined as 
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FIQURE 3. Stability diagram by Andereck, Liu & Swinney (1984) showing the astonishing variety 
of vortex motion which occurs in the flow between concentric cylinders. Here 7 = 0.85. 

with the subscript 1 replaced by 2 if the outer cylinder rotates, and the Taylor 
number as 

T a  = 2R,d3 1 , (1.9) (‘t Y 
assuming only the inner cylinder rotates. Critical values of these parameters 
are denoted as Re, and Ta,. For helium I1 we shall use the dimensionless group 
D, = Q,R;/K, with D ,  defined similarly with Q, and R,. Here K = h/m is the 
quantum of circulation of the superfluid, h is Planck’s constant and m is the mass 
of the 4He atom, K - 9.97 x cm2/s. 

1.3. Precise determination of stability limits : the problem of end conditions 
and aspect ratio 

Before beginning the discussion of the helium I1 problem it is worth recalling briefly 
some lessons learned in classical Taylor-Couette experiments. The determination of 
the critical Reynolds number for the onset of an instability has proven to be a 
considerably greater challenge than was a t  first believed. One of the principal 
problems is the time it takes a vortex array to adjust to a change of conditions. 
Snyder (1969) was the first to make an estimate of the time involved. He suggested 
that for an apparatus of length L ,  the time for regularization of Taylor vortices 
should be 7, x 0.15L2/v. This is a very long waiting time for water (for example) in 
an apparatus of even modest dimensions: for L = 30 em, v = lo-, cm2/s, 
7, x 1.35 x lo4 s x 3.75 hours! This result, which was not appreciated for about 10 
years after it appeared, eventually encouraged investigators to re-examine the 
conditions for equilibrium in their apparatus, and the protocol for ramping the 
Reynold’s number from one value to another. 

Finite annulus effects have been discussed by Di Prima & Swinney (1981) in $6.6 
of their review. They observe that, theoretically, the effect of the ends of the 
apparatus is to change the bifurcation to Taylor vortices to a continuous transition. 
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FIGURE 4. Vortex intensity plots obtained by the laser scanning method (Park & Donnelly 1981). 
The six data panels are for aspect ratios r = 23.42 to 25.70 as indicated across the top. Each trace, 
taken at the Reynolds number indicated on the left, shows the light reflectance beginning at the 
top plug on the left and ending at the bottom plug on the right. Minima in the reflectance 
correspond to inflowing fluid. The vortex flow for aspect ratio r = 24.14 sets in earlier and in a more 
regular manner than for other aspect ratios. 

In  spite of this theoretical result, it is interesting to note that some experiments 
still give the impression of discontinuous behaviour a t  the critical point. One 
example is the torque data of figures 4 and 7 reported by Donnelly (1958). Perhaps 
if these measurements were repeated with modern precautions regarding ramping 
rate, the torque plot would appear continuous. 

Burkhalter & Koschmieder (1973) have conducted experiments varying the end 
conditions on the cylinders. They conclude that non-rotating end caps form the best 
approximation to infinite cylinder conditions. 

Park & Donnelly (1981) have investigated the formation of Taylor vortices in an 
apparatus with varible aspect ratio so that 11-15 vortex pairs could be studied. They 
visualized the flow with Kalliroscope and used a vertical laser sweep to make a rapid 
record of all the vortex pairs in the flow (figure 4). They discovered that if there were 
an integral number of vortex pairs in the flow, (a multiple of the theoretical 
wavelength is a close estimate), the formation of Taylor vortices proceeded in a 
regular manner. On the other hand if such a quantization condition is not obeyed, 
then a dislocation might remain in the flow for some time, which although localized 
in the apparatus, causes the entire array of vortices to exhibit irregular, time- 
dependent fluctuations. 

The ‘experimental protocol’ in a rotating cylinder experiment refers to the set of 
instructions given to the computer controlling the experiment. One of the most 
important of these instructions is the rate of increase of Q,, or the ramping rate. Since 
the controls respond to digital instructions, the ramping rate is not continuous, but 
occurs in discrete steps. One usually tries to use steps which are as small as possible, 
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FIGURE 5.  Data of Park & Jeong (1985) on the onset of the wavy modes m = 2 and 3 compared to 
calculations by Jones (1981). The unusual sensitivity to radius ratio is evident in these results. The 
important feature is the location of the leftmost boundaries of the m = 2 and m = 3 modes. To the 
left is Taylor vortex flow. 

with the understanding that the steps in speed are being averaged over to give an 
average acceleration a = dRe/dt. 

Park, Crawford & Donnelly (1981) reported an attempt to quantify how large the 
ramping rate a might be made by examining the vortices formed on ramping up 
through the onset of Taylor vortices and ramping down until the vortices disappear. 
They found that in order to keep hysteresis of the flow below some acceptable limit, 
the ramping rate a* = dRe/dt* had to be kept below - 10, where the dimensionless 
time is t* = t / ( L d / u ) .  This criterion suggests a somewhat more optimistic timescale 
than that proposed by Snyder (1969) (0.15L2/u). Note that the a* criterion depends 
on the experiment being carried out : some experiments by Park & Jeong (1985) have 
had to use a* values as low as 0.1. Furthermore, the a* criterion was developed only 
for passage through the critical region. The acceptable ramping rate for highly 
supercritical flows has not been investigated. 

When the Reynolds number is raised above the onset of Taylor vortices, it  is 
possible to see bending waves on the Taylor vortices which travel in the azimuthal 
direction. This is often called the wavy vortex state of Taylor vortex flow and the 
number of azimuthal wavelengths is called the mode number m. These waves have 
amplitudes which can grow as the Reynolds number is increased and can even force 
vortex pairs out of the flow altogether as demonstrated by Crawford, Park & 
Donnelly (1985). 

Expulsion, or indeed acquisition, of vortex pairs produces a radical change in the 
entire vortex flow and a discontinuous change in wavelength of the vortices. In  
another study of wavy vortices, Donnelly et al. (1980) showed that in an apparatus 
with 7 = 0.88 there develop turbators, i.e. dislocations in the vortex structures 
disturbing the entire flow, which are apparently stable in certain ranges of Reynolds 
numbers. These ranges of persistent turbator motion are known to depend on the 
ramping rate a* and can, with sufficiently small a*, be made to disappear entirely 
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(Jeong 1986). The transition to the wavy vortex state can excite different azimuthal 
modes m. It has been known for some time that the values of m are quite sensitive 
to the radius ratio 7. Just how sensitive has recently been demonstrated 
experimentally by Park & Jeong (1985) and theoretically by Jones (1981). We 
reproduce the results of these authors in figure 5 to show this sensitivity. 

Extensive visual studies of vortices in cylinders of small aspect ratio have been 
reported by Benjamin (1978a, b ) ,  by Benjamin & Mullin (1981), by Mullin (1982) and 
Benjamin & Mullin (1982). Here a whole range of interesting new behaviour occurs. 
For our purposes one of the most important results is the multiplicity of flows which 
can be established in the Taylor experiment. Spectacular photographs are shown by 
Benjamin & Mullin (1982) of fifteen different flows produced under identical 
conditions with 7 = 0.600, r = 12.61, Re = 359, ,u = 0. 

We have cited the experiments above to demonstrate that even in the classical 
Taylor-Couette problem, there are difficulties and complications which require great 
care in preparing the flow if reproducible results are to be obtained. Little of this 
knowledge was available when most of the experiments in helium I1 discussed here 
were performed. 

2. Early history of the flow of helium I1 between concentric cylinders 
In this brief section we describe the three earliest experiments on rotating cylinder 

flow of helium 11. Background on the properties of helium I1 is contained in many 
references, including a recent article on turbulent vortices (Donnelly & Swanson 
1986). 

2.1. Experiments of Kapitxa 
The study of helium I1 between rotating cylinders was begun by Kapitza (1941) who 
built a glass capillary tube with a concentric solid rod inside, the annular space 
between the pair being filled with helium I1 (see figure 6). When the heater is turned 
on, a counterflow is established in which the superfluid moves in potential flow 
toward the heater and the normal fluid counterflows toward the exit. The mass flux 
j = p, v, + p, v, = 0, where p, and p, are the normal and superfluid densities, v, and 
v, the normal and superfluid velocities. It was found possible to affect the transport 
of heat in helium I1 in a capillary by setting the helium into rotational motion. The 
heat transport was measured in a capillary (labelled 1 in figure 6) of length 4 cm and 
internal diameter 0.62 mm. A rod labelled 2,0 .5  mm in diameter, is rotated a t  speeds 
up to 1900 r.p.m. Control experiments established that rotation of the rod with no 
heat flux produces no increase of temperature inside the vessels. 

The experiment was conducted by turning on the heater and measuring the 
temperature difference AT between the bulb and bath. The rod was then started into 
rotation and the temperature differences were observed to increase as shown in figure 
7 .  The initial flow was subcritical (i.e. free of quantized vortices) apparently only at 
2.02 K, as evidenced by a short region of zero temperature difference. The flows at 
1.66 K and 1.86 K apparently were above critical before rotation was begun. The 
basic flow of the normal component in this experiment without rotation is axial, and 
with rotation, spiral. 

Kapitza also measured the counterflow heat transport across a capillary with an 
accompanying mass flow, and found a reduction in heat transport for this flow as 
well. We know of no further investigation on spiral flow in helium 11, but there is a 
considerable literature on combined heat and mass flow, summarized by Tough 



170 R. J .  Donnelly and M .  M .  LaMar 

To helium 

1 2  
I_w 

cm 

FIQURE 6. Kapitza’s apparatus (Kapitza 1941). The bottom chamber, containing a heater and 
thermometer, is connected through capillary 1 to the bath (not shown). Rod 2 is connected through 
a seal a t  the top of the apparatus and can be rotated from the outside. 

(1982) (see also Donnelly & Swanson 1986). This system deserves to be re-examined 
with modern techniques. 

2.2.  Experkent of Hollis Hallett 

The next appearance of rotating cylinders in low-temperature physics was an 
apparatus built at Cambridge by Hollis Hallett (1953) who was concerned with the 
determination of the viscosity of helium 11. The Poiseuille flow method of 
determining viscosity was known to yield zero viscosity under low-velocity 
conditions, whereas oscillating disk viscometers gave a finite viscosity. The damping 
of an oscillating disk a t  low amplitudes, however, is proportional to the product 
7pn where 7 is the viscosity and pn the normal density. Values of pn were just 
beginning to be available a t  that time from the Andronikashvili pile of disks 
experiment and second-sound velocities. Recognizing that a rotating viscometer 
gives one of the most direct determinations of viscosity, Hollis Hallett designed a 
viscometer with the outer cylinder rotating and the inner cylinder suspended by a 
torsion fibre. 
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Rotational velocity (r.p.m.) 

FIGURE 7. Kapitza’s results, showing the increase of temperature drop across the rod and capillary 
as a function of rate of rotation at different temperatures (Kapitza 1941). 

The apparatus had cylinders of radii R, = 1.9913+0.0001 cm, R, = 2.0970+ 
0.0006 cm. The outer cylinder was connected to the drive shaft by means of the 
gear system. The inner cylinder, made of duraluminum had length h = 2.990+ 
0.005 cm and was protected from end effects by guard rings. The inner cylinder was 
suspended by a quartz rod equipped with a magnetic damping device to control the 
swings of the suspended cylinder. Hollis Hallett found that in liquid helium 11, the 
torque-rotation curve was nonlinear. As it turned out, this instrument lacked 
the resolution to find the laminar flow regime. Hollis Hallett continued to work with 
the same instrument in Toronto, as we shall describe in $4.2. 

2.3. Experiment of Wheeler, Blakewood & Lane 
Second sound in helium I1 is a periodic counterflow of the normal and superfluids 
which corresponds to temperature fluctuations rather than pressure fluctuations, as 
in ordinary (first) sound. The oscillating normal-fluid component in second sound has 
a strong interaction with quantized vortices giving rise to a force called ‘mutual 
friction ’. Mutual friction attenuates second sound and is the most sensitive method 
for measuring the presence of quantized vortices. All this was unknown to Wheeler, 
Blakewood & Lane (1955a, b )  who measured the propagation of d.c. second-sound 
pulses in the space between concentric cylinders with the inner cylinder rotating 
(figure 8). Their experiment examines the alteration of the state of helium I1 in a 
shear flow. They discovered that the velocity of second sound was unchanged, but 
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FIGURE 8. Apparatus constructed by Wheeler, Blakewood & Lane ( 1 9 5 5 0 )  to measure the 
attenuation of second sound between concentric cylinders, with the inner cylinder rotating. T and 
R are second-sound pulse transmitters and receivers. S is a drive shaft, B the inner cylinder, L the 
outer cylinder and C an adjustable plug. 

that extra attenuation of second sound appeared. This was one of the first reports of 
the attenuation of second sound by quantized vortices, although strangely enough 
the idea of quantized vortices was not mentioned by the authors. At the end of this 
paper there is a reference to a paper by Hall & Vinen (1955) which reported 
observation of second-sound attenuation in a rotating resonator with helium I1 in 
uniform rotation, as opposed to an experiment with shear. The Hall & Vinen method, 
designed to study the vortex array, proved superior to the previous experiment for 
understanding quantized vortices and mutual friction. The Wheeler et al. paper, 
however, was the first to study the flow of helium I1 between concentric cylinders by 
second-sound attenuation. 

We note here for future reference the method introduced by Hall & Vinen to 
determine the presence of quantized vortices in uniformly rotating helium by 
observing the attenuation of second sound. If a resonant mode for second sound at 
frequency f has a full width at half-maximum of A ,  and amplitude A ,  with no vortex 
lines present, and maximum amplitude A in the presence of vortex lines, then the 
attenuation of second sound is given by 

where u2 is the velocity of second sound. For the resonance, Q = f / A , .  According to 
Hall & Vinen the line density expressed as length of vortex line per unit volume is 
given by 
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where B is a mutual friction coefficient which depends on temperature and weakly 
on frequency and relative velocity of the normal and superfluids (Swanson et al. 
1987). In  uniform rotation 

(2.3) L = 252/K. 

The sensitivity of this method is notable : a well-designed resonator can be used to 
detect quantized vortices with a least count of as little as 20 em of quantized vortex 
line in a cubic centimeter of helium 11. The volume of core material in such vortices 
is about 1 part in 1014 of helium 11. 

3. Rotation of the superfluid 
In preparation for a discussion of the entry of vortices between rotating cylinders, 

we recall briefly earlier work on the appearance of vortices in a rotating bucket and 
an annulus. 

3.1. Rotation in a simple bucket 
When the original Landau model of liquid helium was first announced in the early 
19409, the normal and superfluid velocities v, and v, were described by two-fluid 
equations, and the flow of the superfluid was considered irrotational : 

curl us = 0. (3.1) 
Since the two-fluid equations had predicted second sound, physicists assumed they 
were correct. The two fluid equations together with (3.1) predict that because only 
the normal fluid is rotating, the parabolic meniscus should have a depth depending 
on the normal-fluid fraction p,/p. This was soon shown to be incorrect in experiments 
by Osborne (1950) and others. The solution of this dilemma turned out to be the 
hypothesis of quantization of circulation. London (1954) quotes an unpublished 
remark by Onsager to the effect that the superfluid will rotate in a series of concentric 
cylindrical shells each with azimuthal velocity ~ k l 2 n r  where k = 0,1,2,  . . . . The 
number of rings was set by a minimization procedure. The critical velocity for 
appearance of a single ring of quantized circulation was 

K sz, = - 
471 R2 ’ 

where R is the radius of the bucket. This is a very low rate of rotation (8 x rad. 
per s for R = 1 em). 

By 1955 Richard Feynman’s article on vortices had appeared. Feynman realized, 
as Onsager did earlier (1949), the circulation in a superfluid would be quantized. But 
Feynman went on to suggest that in rotation the vortices would appear as lines, 
rather than concentric shells as had been supposed by Onsager, and the work of Hall 
& Vinen with second-sound attenuation has verified this idea. Feynman estimated 
the areal density of vortex lines by assuming that the classical vorticity 

o = curlv, (3.3) 

would be imitated by an array of vortex lines each of strength K. Thus in a rotating 
bucket he predicted-a density w 

no = -. 
K 

(3.4) 

We refer to (3.4) as ‘Feynman’s rule’. Since for solid-body rotation w = 2Q, the 
predicted density is about 2000Q lines per em2. We shall show in $4.3 that (3.4) is 
valid for more general flows between rotating cylinders. 
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The difference between the Onsager proposal of concentric vortex sheets, and the 
Feynman vortex-line model was investigated by Hall & Vinen (see Hall 1960; 
Glaberson & Donnelly 1986) using the method of minimizing the free energy of the 
vortex array 

F = E - M - n .  (3.5) 

Here E is the energy per unit length of the vortex array and M the angular 
momentum. Calculations based on (3.5) shows that the vortex-line array has a lower 
free energy than the vortex-sheet array and hence will be preferred. The calculations 
also show that the vortex lines rotate with the container and that there is probably 
one layer of lines missing a t  the edge of a rotating bucket. Experiments (reviewed 
recently by Glaberson & Donnelly 1986) support this idea. For purposes of this 
discussion we shall ignore this boundary correction, although the reader should be 
aware that it exists and is important in some experiments. A criterion for neglecting 
the boundary correction is that the mean spacing between vortex lines 

6 = (/C/O); (3.6) 

is small compared with the radius of the bucket, or gap between cylinders. 

3.2. Rotation in an annulus: theory 
Returning to the flow between concentric cylinders, the annular-bucket problem 
corresponds to SZ, = Ql. The calculation of the critical velocity for the appearance of 
quantized circulation states and vortices in an annular region in solid-body rotation 
was addressed by Vinen (1961) for very small radius ratio, by Donnelly & Fetter 
(1966), and later more completely by Stauffer & Fetter (1968) for a narrow gap. The 
technique was again free-energy minimization. They showed that a t  low angular 
velocities the equilibrium superflow is a purely irrotational circulation with 
tangential velocity as close as possible to that of the cylinders. The quantized 
circulation states form a sequence of equally spaced levels up to a critical angular 
velocity 

0 O --Lln(:), - 7Cd2 (3.7) 

a t  which point singly quantized vortices appear in the bulk of the fluid. For 0 just 
beyond 0, the vortices are equally spaced on a circle midway between the walls, and 
their number increases rapidly with 0. 

Stauffer & Fetter (1968) were also able to estimate the angular velocity for the 
appearance of the second row of vortices. 

A further remark of Donnelly & Fetter may be useful here. They note that 
quantized vortices appear in the annulus a t  an angular velocity 0, when vortices can 
first compensate for the difference in irrotational velocity between the inner and 
outer walls. This result will prove to be important for the discussion of the flow 
between concentric cylinders in the presence of shear : it suggests that vortices will 
appear in an attempt to prevent large relative velocities between the superfluid and 
the walls. 

With these insights we shall now proceed to examine the experimental situation 
for flow on the solid-body-rotation line of figure 2. 

3.3. Rotation in an  annulus : experiments 
Experiments to detect the appearance of the first row of vortices in an annulus with 
second sound were carried out by Bendt & Donnelly (1967) and reported more fully 
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FIGURE 9. Rotation-annulus apparatus of Bendt & Donnelly (1967) and Bendt (1967 b ) .  The frame 
A is stationary, and the bearing B is machined from Kel-F plastic. The rotating resonant cavity 
C is formed from one of five interchangeable inner cylinders D, and a fixed outer cylinder E, all 
made of anodized aluminium. Second sound was generated and received by Aquadag coatings on 
the cylindrical walls. 

FIGURE 10. Data of Bendt (1967) showing experimental determination (circles) of 8, given by 
Donnelly & Fetter’s relationship (3.11) (the lower solid line) and 1.4 K. The second harmonic 
(triangles) was thought to be sensitive to the appearance of a second row of vortices, as calculated 
by Stauffer & Fetter (1968) (the upper solid line). 
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by Bendt (1967 b) .  Their apparatus was an annular resonator made up of a fixed outer 
cylinder and five interchangeable inner cylinders (figure 9). Here R, = 1.560 cm and 
d = 0.062, 0.082, 0.104, 0.140, and 0.190 cm. 

Their experimental values of 52, are shown in figure 10 and it is clear that except 
for the narrowest gap the results are in good agreement with (3.7). 

Bendt & Donnelly (1967) and Bendt (1967b) also measured the attenuation of 
second sound with a second harmonic which has a node in the middle of the annulus. 
If the vortices form in the middle of the gep, as predicted, then the second harmonic 
should be relatively insensitive to their presence. This indeed was the case: 
attenuation for the second harmonic first appeared at  about 1.952,, which the 
authors attributed to the appearance of a second row of vortices. The appearance of 
a double row was predicted to be at  about 1.8552, by Stauffer & Fetter (1968). 

4. Flow of helium I1 between concentric cylinders 
We are now in a position to discuss all the known experimental and theoretical 

evidence on the flow of helium I1 between concentric cylinders. The various measures 
of rotation of the cylinders are defined much as in $1.3. For the Reynolds number and 
Taylor number there is clearly a question of which density, p or p,, should be used 
for the kinematic viscosity. If the normal and superfluids are not coupled by mutual 
friction, the kinematic viscosity of the normal fluid would be v, = TIP,. In what 
follows the inner cylinder is denoted by a subscript 1 and the outer cylinder by 
subscript 2. The further subscript c denotes the critical values of these parameters. 
The classical Reynolds number is denoted by Re, and that for helium I1 is based upon 
the uncoupled normal fluid parameters : 

The corresponding Taylor number is 

where vn = TIPnr and the dimensionless quantum parameter 

D , = T .  Ql R2 (4.3) 

where these definitions can apply to rotation of either cylinder by changing 
subscripts. 

The average number of vortices across the gap, N,,  can be estimated roughly by 
noting that the mean spacing between vortices is 6 (cf. (3.6)) and we define 

We shall tabulate N ,  at the first critical velocity observed in the tables of data 
summarizing the experiments. 

We shall see that the evidence from rotating-cylinder viscometer measurements 
suggests that the extra stability gained by rotating the outer cylinder in classical 
Couette flow is not realized in helium 11. The experiments of Bendt (1966, 1967u), 
described in 54.5, give useful information on the penetration of vortices between 
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FIGURE 11. Apparatus employed by Kolm & Herlin (1956) to study the dynamics of helium 11. The 
inner cylinder is shown suspended by Beams type of magnetic suspension. This cylinder was set 
into rotation and observed to coast to rest as shown in figure 12. 

rotating cylinders and the relationship of the line density to the vorticity of the 
flow set by cylinder rotation. The torque experiments of Donnelly, the second- 
sound absorption experiments of Snyder and Wolfe et al., and the theories of 
Chandrasekhar, Mamaladze & Matinyan, will also be discussed. In 94.9 we consider 
how to generalize the calculations of $3 above so that the entry of vortices 
between rotating cylinders in the presence of shear can be computed. This will be 
the starting point for future stability theories of helium 11. 

4.1. Experiment of Kolm & Herlin 
Kolm & Herlin (1956) constructed the apparatus shown in figure 11. An iron rotor 
is placed inside a Plexiglas tube. The upper part of the rotor is conical in shape and 
is suspended below the conical top of an iron core by a magnetic field produced by a 
solenoid surrounding the iron core. The horizontal position of the rotor is fixed by 
the divergence of the axially symmetric field, and its vertical position is stabilized by 
a servomechanism which controls the current in the solenoid and derives its input 
signal from a sensing coil mounted below the rotor. The rotor was itself essentially 
free of friction, and the experiment consisted of accelerating the rotor to some 
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Apparatus dimensions R, (cm) 0.635 
R, (cm) 0.794 
d (cm) 0.159 
h (cm) 7.62 

Constants 7 (PP) 20.70 

Measured values T (K) 2.135 

Calculated values Renc 1192 

Pn (g/cm3) 0.1222 

Q, (rad/s) 2 

DlC 809 
N ,  13 

TABLE 1 .  Data of Kolm & Herlin (1956). Note that values of 7 and pn are currently accepted 
magnitudes. 
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FIUURE 12. Data obtained by Kolm & Herlin (1956) at 2.135 K showing the decay of rotation rate 
of the rotor shown in figure 11.  The slope of the decay corresponds to the effective viscosities 
shown. 

suitable initial velocity, and then permitting it to coast freely. The slowing of the 
rotor was determined by optical detection of marks on the bottom of the rotor. 
Apparatus dimensions and some results are shown in table 1. The authors report 
great difficulty with the apparatus and few results. One interesting result is shown 
in figure 12 where the data indicate a break in damping a t  about 120 rad per min, 
corresponding to a change in the effective viscosity of the liquid from 63.3 pP to 
36.6 pP. The latter value is still about twice too high owing perhaps to some 
instability still present in the flow (cf. Chandrasekhar & Donnelly 1957). 
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Apparatus dimensions R ,  (cm) 1.991 
R, (em) 2.097 
d (cm) 0.106 
h (em) 2.990 

Figure 13 Figure 14 
Constants 4 (iw 13.04 14.81 

P n  (gm/cm3) 0.0486 0.0819 

Measured values T (K) 1.82 2.002 
0, (cm/s) 0.095 0.092 
Q, (rad/s) 0.0453 0.0439 

Calculated values Re,, 35.6 51.2 

3.1 3.0 
180 174 

Observed values of the critical velocity 

T (K) 'uc (cm/s) T (K) w c  (cm/s) 
2.180 0.25 2 1.496 0.085 
2.100 0.09 1.400 0.070 
2.002 0.093 1.308 0.080 
1.820 0.095 1.250 0.080 
1.650 0.055 1.131 0.122 

TABLE 2. Data of Heikkila t Hollis Hallett (1955). The outer cylinder is rotating, 4 and pn are 
currently accepted magnitudes; errors on w, are - 10%; 2.180 K was, at the time, below T,. 

In the light of the difficulties the authors report with their apparatus, including 
eddy current heating of the rotor, this type of apparatus is not likely to be of long- 
range use in studying helium 11. The boundary conditions on the rotor ends are 
poorly defined, and the constant deceleration of the rotor may prevent the flow from 
ever reaching equilibrium. The idea of a magnetic suspension, however, is novel in 
Couette flow, and may be useful with more modern technology. 

4.2. Experiments of Heikkila & Hollis Hallett 
Hollis Hallett moved to the University of Toronto in the early 1950s taking the 
viscometer described in $2.2. There he undertook a more ambitious programme of the 
study of the hydrodynamics of helium I1 and soon was able to achieve an order-of- 
magnitude greater sensitivity in torque. He adopted a 15p tungsten fibre 20 em long 
as the torsion wire. Data of Heikkila & Hollis Hallett (1955) are shown in table 2. 

The results of torque measurements with the outer cylinder rotating are shown in 
figures 13 and 14, where the solid circles are new data and the open circles data 
obtained a t  Cambridge. The values of viscosity reported by the authors, converted 
to the T58 temperature scale, are still useful and are discussed in the tables of 
Barenghi et at!. (1987). The critical Reynold's number observed, based upon the 
uncoupled normal fluid parameters and the outer cylinder rotation rate, is Renc = 
SZ,, R,dp,/T = 51 a t  2.0 K and should be compared to Donnelly's results in $4.4 
below). 

4.3. Theory of Chandrasekhar & Donnelly 
Chandrasekhar & Donnelly (1957) were the first to consider the stability of the flow 
of helium I1 between rotating cylinders. They noted that if the Landau equations of 
motion are used then the superfluid would obey the Rayleigh stability criterion (see 
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FIQURE 13. Data obtained by Heikkila & Hollis Hallett (1955) at 1.82 K using a rotating-cylinder 
viscometer with the outer cylinder driven. v is the velocity of the outer cylinder. The solid points 
are new data, the open points from the earlier report of Hollis Hallett (1953). 

FIQURE 14. Data obtained by Heikkila & Hollis Hallett (1955) a t  2.002 K showing the analysis 
to locate the critical velocity and the absolute viscosity. 7 = 13.94k0.07 FP and D, = 0.093+- 
0.003 cm/s. 

$1.2), and in particular would be unstable for any rotation of the inner cylinder. The 
normal fluid would act as a classical viscous fluid with viscosity v ,  density pn and 
kinematic viscosity u, = v /pn ,  and thus would be unstable when the Taylor number 
T a  2 T,. The authors note that when mutual friction is included the situation is 
drastically changed. The presence of vortex lines introduces a coupling due to mutual 
friction between the two fluids. The superfluid instability is raised above its value of 
zero for rotation of the inner cylinder and the normal-fluid instability is raised above 
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Apparatus dimensions R2 (em) 2.00 
Rl (em) 1.90 
d (cm) 0.1 
h (cm) 5 

Figure 15 (a )  ( b )  (c) (4 
Constants rl (P) 1650 18.20 13.39 14.48 

P (g/cm3) 0.81 0.1091 0.0165 0.084 

Measured Values !P (K) 77 2.1 1.5 1.35 
P n  (‘1 3.47 29.49 72.55 60.03 

- 35.43 141.47 148.42 
8 1  (rad/s) 1.18 0.177 0.0444 0.0423 

- 0.213 0.0866 0.1047 

p ,  (4 

8 2  (raws) 
Calculated values Recnl 169 202 10.4 4.66 

- Been2 243 20.3 11.5 
DICI 64 1 159 153 - 

- DlC2 77 1 313 379 
Nv 5.7 4.0 4.4 - 

TABLE 3. Data of Donnelly (1958). Note that figure 15 (a)  gives data for liquid nitrogen, while ( b ) ,  
(c), and (d )  are for helium 11, inner cylinder rotating. Viscosities and densities are currently 
accepted magnitudes. For (a )  Pn = c, Q, = w,, and Recnl = Re,. 

the classical value of Ta,  = 1708. Numerical results are contained in table I of the 
paper. 

The experiment of Kolm & Herlin described in $4.1 above was interpreted by 
Chandrasekhar & Donnelly as the unstable flow between the two critical velocities 
where the drag might be greater owing to disturbances from the lower branch. 

The theory of Chandrasekhar & Donnelly omits a term in the equations of motion 
for a rotating fluid which was not appreciated a t  the time, namely the effect on 
stability of the tension in the vortex lines. This ‘tension ’ arises because vortex lines 
have an energy per unit length which can be interpreted as a tension (see, for 
example, Glaberson & Donnelly 1986). The stability problem becomes very 
complicated with the full equations, but some insight may be obtained by considering 
a derivation equivalent to the Rayleigh criterion, as reported in 54.9 below. 

4.4. Experiments of Donnelly 
Donnelly’s (1958) torque apparatus was designed to work in cryogenic as well as 
classical fluids. His 1959 experiments were designed to verify the ideas of 
Chandrasekhar & Donnelly. The deflection of the outer cylinder is denoted as q5 and 
the period of rotation of the inner cylinder as P ,  so that in laminar flow the product 
$P is proportional to G/Q, and hence is proportional to the viscosity of the fluid. The 
constant C = q/$P was determined by calibration in air. Some data are given in 
table 3. The results shown in figure 15 were carried out with cylinders of radii R, = 
1.9 em, R, = 2.0 cm. Figure 15(a) shows data for liquid nitrogen obtained with a 
slightly above atmosphere pressure to prevent bubbling. The observed viscosity, 
q = 1.49 x P). The critical 
Reynolds number corresponding to P, is - 169, compared to the theoretical value for 
RJR, = 0.95 of 185, showing that the apparatus is working correctly. 

Results a t  three temperatures in helium I1 are shown in figure 15 (b -d ) .  The torsion 
fibre used was considerably more sensitive than the one used for liquid nitrogen. The 

P, is about right for the liquid at 77 K ( -  1.65 x 
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FIQURE 15. The variation of effective viscosity, proportional to $P, with period of rotation of the 
inner cylinder BS obtained by Donnelly (1959). (a) Liquid nitrogen, 77 K, C = 1 . 6 0 ~  ( b ) ,  (c) 
and (d )  liquid helium I1 at 2.1 K, 15 K and 1.35 K respectively, C = 3.43 x lo-'. P, and P, denote 
the critical periodsof rotation for instability which Donnelly believed were due to instabilities in the 
superfluid and normal fluid as discussed by Chandrasekhar & Donnelly (1957). 

viscosities obtained in the laminar flow regimes are comparable to modern estimates 
(18.9 pP at 2.1 K, 13.39 pP at 1.5K and 14.48 pP at 1.35K). At all three 
temperatures two discontinuities are observed in the effective viscosity relationship ; 
the separation in these speeds widens as the temperature is lowered. (The rise in 
effective viscosity between P, and Pn a t  2.1 K is much larger than the rise before 
P, in liquid nitrogen.) Donnelly interpreted his results as confirmation of the ideas 
advanced earlier by Chandrasekhar & Donnelly (1957) that two instabilities occur, 
one associated with the normal fluid and one with the superfluid (see 54.4). 

An important point about the stability of helium I1 can be established by 
comparing the results with the earlier work of Heikkila & Hollis Hallett discussed in 
$4.2. These authors obtained Renc = 51 at 2.0 K with the outer cylinder rotating; 
Donnelly obtained Renc = 202 at 2.1 K with the inner cylinder rotating. At lower 
temperatures Heikkila & Hollis Hallett obtained Renc = 3.85 at 1.35 K and Donnelly 
obtained Renc = 4.66 at 1.35 K. Thus it appears, on the face of it, that rotation of 
liquid helium I1 near TA is less stable with the outer cylinder rotating than the inner! 
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/ D’ 
F 

FIGURE 16. Rotating annular second-sound resonant cavity built by Bendt (1966). The bearings A 
are Kel-F, and the rotating cylinders are B and C. D marks the location of holes drilled in the 
bottom plate to release the heat generated by aquadag transducers painted on B and C. E is an 
aluminium shield and F a ball bearing. 

And considering that Couette (1890) and Taylor (1936) obtain Re, - 2000 for 
rotation of the outer cylinder, the outer-cylinder rotation is dramatically less stable 
than for a classical fluid. 

4.5. Bendt’s Experiments 

A direct experimental test of Feynman’s rule (3.4) was provided by Philip Bendt 
(1966, 1967a) in papers which we believe have been underappreciated. Bendt 
constructed a highly precise pair of concentric cylinders of radii R, = 2.722 em, 
R, = 3.333 cm with a gap d = 0.6105 cm, which was reduced to d = 0.608+_0.002 cm 
with aquadag coatings used for generation and detection of second sound (figure 16). 

Bendt’s cylinders were carefully chosen so that (R,/R,)2 = 1.50. Thus by arranging 
to rotate either cylinder and by constructing a special gearing which makes 
52,/52, = 3/2 he was able to produce four flows of different vorticity w :  (cf. (1.6)) 

o = 252,; (1) solid-body rotation, 52, = 52,, 

(3) 52, = 0, 
(4) potential flow, 52,/52, = 3/2, 

(2) 51, = 0, w = 452,; 
w = 652,; 

o = 0. 
Bendt determined the relative vortex-line density by measuring the attenuation of 
second sound using deposited carbon (aquadag) transducers on the insides of the 
cylinders. After careful checks for allowed power input and linearity of attenuation 
with angular velocity, he measured the radial attenuation a and hence deduced the 
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FIGURE 17. Second-sound attenuation results obtained by Bendt with the apparatus of figure 16. 
(a) Results at 1.4 K showing the excess attenuation of second sound under the indicated conditions. 
(6) Detail showing the correspondence of all results below the critical velocity when plotted against 
o. This is a direct test of Feynman’s rule, (3.4). 0 ,  Solid-body rotation; ., outside cylinder only; 
A, inside cylinder only. 

mutual friction coefficient B .  His values were in good agreement with earlier values 
and indeed agree to within 9 % with contemporary accepted values (Barenghi, 
Donnelly & Vinen 1983). 

The results are shown in figure 17 (a ,  b ) ,  scaled as attenuation CL ws. vorticity w .  If 
the relationship (1.6) between o and rotation rates did not hold, the collapse of data 
along a single line would not occur. The deviation of attenuation for the inner 
cylinder rotating indicates the onset of some type of secondary flow when the inner 
cylinder rotates faster than 0.4 rad/s. 
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FIQURE 18. Results on the attenuation of second sound by Bendt exploring along the potential-flow 
line (dashed) of figure 2, 52,/SZ2 = Ri/Rt = 1.500. Theoretically vortices should not exist on this 
line, but are observed to  enter a t  52,. 

T (K) 52, is-l) Dl, 
1.247 0.30 2230 
1.400 0.32 2380 
1.598 0.42 3120 
1.800 0.52 3860 
1.950 0.60 4460 
2.001 0.63 4680 

TABLE 4. Velocities a t  which Bendt (1966, 1967a) observed attenuation to begin in his experi- 
ments on potential flow. D,, = Dlc; SZ, is defined in figure 18. 

For the case of potential flow, Bendt reports the data reproduced in figure 18, 
taken after a transient decay time of 6 or 8 min which shows that for 52, < 52, (see 
table 4) there is no observable attenuation. 

Bendt’s experiments establish that over his range of speeds, the superfluid adopts 
the classical (viscous) fluid velocity distribution, (1.2). They further establish that 
the vortex-line density is given by Feynman’s rule, (3.4). 

4.6. ExPeriments of Synder 
H. A. Snyder (1974) reported the beginning of an ambitious set of experiments. His 
approach was to solve the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) equations 
of motion for He 11. These equations are based upon the idea of treating the vortices 
as a continuous distribution while recognizing the elastic properties of the vortices 
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FTQURE 19. Second-sound attenuation measurements by Snyder (1974). The numbers denote the 
frequencies of various resonant modes. The critical angular velocities Qcl and Q,, correspond to the 
breaks in the 1309 Hz curve. 

Constants 

Measured values 

Calculated values 

0.795 
1.590 
0.795 

12.04 

13.05 

1.63 
0.07 
0.38 

91 
493 
44.4 

24 1 
5.4 

TABLE 5. Data of Snyder (1974). q is based on current data. Outer cylinder is at rest. 

which arise because vortices have an energy per unit length. The derivation of these 
equations is presented by Hall (1960). The plan was to solve the HVBK equations for 
linear stability similar to the approach of Chandrasekhar & Donnelly (1957). The 
difference he proposed was to use the HVBK equations, which were not formulated 
at  the time Chandrasekhar & Donnelly did their work, and to use numerical methods 
to obtain solutions. He chose 7 = RJR, = 1/2. 

Snyder’s apparatus followed the Bearden (1939) design. Change gears were 
provided to allow the inner and outer cylinders to turn at  fixed ratios of angular 
velocity. A second-sound transmitter and receiver were painted on the anodized 
aluminium inner cylinder. Aquadag was used as a temperature-dependent resistance 
for detecting second sound and the transmitter was a heater made of silver paint. 
Some resonant Q’s (see $2.3) exceed 5000 even with the cylinders rotating, which 
Snyder interprets as meaning that the space between cylinders is uniform to better 
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Constants 

Measured values 

Calculated values 

Figure 21 Figure 22 

Apparatus dimensions R, (cm) 2.075 2.57 
R2 (cm) 2.65 2.65 
d (cm) 0.575 0.08 

T (PP) 14.6 13.2 
Pn (gm/cm3) 0.0791 0.0546 

T (K) 1.99 1.86 
8) 52, = 0.38 R, = 0.25 

@ad/ 8) R2 = 1.07 52, = 1.45 
(raw 9 1 52, = 2.75 R3 = 6.66 
(rad/s) 52, = 5.65 

Rncl = 2460 
RncP = 6920 
Rnc3 = 17 800 
Rne4 = 36500 
D,,, = 1640 
D,,, = 4620 
Dlc3 = 11 900 
Dlc4 = 24400 
N ,  = 20 

h (cm) 9.0 9.0 

RncO = 213 
Rncl = 1230 
Rnc3 = 5660 

DlcO = 1660 
D,,, = 9610 
Dlc3 = 44 100 

N ,  = 17 

TABLE 6. Data of Wolf et al. (1981) : the inner cylinder is rotating. 7 and pn are currently accep- 
ted magnitudes. N, is computed for 0,. 

than 0.25 pm, even during rotation. In his experiment he inferred the presence of 
vortices by analysing the second-sound resonance curves as a function of rotation 
rate. Since the additional attenuation of second sound by vortex lines is dependent 
on the angle between the direction of wave propagation and the vortex lines, each 
resonant mode will react differently to a given array of vortex lines. 

The data shown in figure 19 and table 5 were taken a t  T = 1.63 K with 52, = 0. 
Each mode of resonance, indicated by the corresponding resonant frequency in Hz, 
has a different dependence of excess attenuation on 52,. All the curves have some 
features in common. There is a range of no additional attenuation a t  the lowest 
speeds of rotation. Apparently this range is analogous to the vortex-free flow in a 
rotating annulus (i.e. 52 < 52, in figure 10). 

4.7. Experiments of Wolf et al. 
The most recent experiments on the stability of helium I1 between rotating cylinders 
have been reported by Elleaume, Hulin & Perrin (1978), and by Wolf et al. (1981) see 
table 6. They report the first comprehensive use of second-sound attenuation as a 
tool to study the stability of helium I1 between rotating cylinders. In  principle they 
could examine the attenuation in the azimuthal, radial and axial directions: much 
can be learned about vortex distributions in this manner. 

Their apparatus is shown in figure 20 and consists of cylinders made of duralinox : 
R, = 2.65 cm, with interchangeable inner cylinders giving gaps of d = 0.575, 0.35, 
0.15 and 0.08 cm. The length of the cylinders is h = 9.0 cm. The study was made by 
observing the attenuation of second-sound resonances. The transmitters and 
receivers consisted of four mylar strips 2 mm wide, 20 pm thick set 90" apart on the 
inner wall of the stator, parallel to the rotation axis. The mylar strips were 
aluminized on the outside and held to insulating electrodes by a 200 V bias voltage. 

7 FLY 186 
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FIGURE 20. Second-sound attenuation apparatus constructed by Wolf et al. (1981). Resonances of 
second sound were obtained principally in the azimuthal direction from the mylar strips attached 
to the outer cylinder. Other transducers a t  the top and bottom allowed axial attenuation to be 
obtained. 

They were excited by a 1-10V r.m.s. a.c. signal of angular frequency w .  Second 
sound was generated by the oscillatory motion of the superfluid behind the strips, 
the normal fluid being relatively less mobile because of its viscosity. 

The principal resonances observed in this apparatus were purely orthoradial 
(azimuthal) modes where the temperature oscillation, a t  least in the low d /R  limit, 
varies as 

T = To exp[i(wt-m@)], (4.4) 

where 9 is the azimuthal angle. At higher frequencies, radial resonances were seen 
with h = d = 2 d / p ,  where p is an integer for a pure radial mode and h is the 
wavelength. Weak axial resonances also appeared. 

The authors measured the attenuation of second sound by observing the &-values 
of their resonances. The Q in the absence of attenuation, Q o ,  is typically 5000 for 
d = 0.575 cm. Rotation induces a Doppler splitting of the resonance into two 
components, plus broadening of the resonances owing to attenuation of second sound 
by the vortices. 

The apparatus was also equipped with resistance elements a t  the top and bottom 
of the cylinders in order to allow a study of the attenuation of second-sound pulses 
in the axial direction. Attenuation of a radial mode could occasionally be observed 
at high rotation rates. 

For a given vortex-line density (length of line per unit volume) described by 
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L(r, 0) a t  the point r ,  oriented a t  an angle with k ranging between 0 and 0+d0, they 
assumed the attenuation of second sound in a given direction of propagation k is 
given by 

a(k, r )  = - L(r,  0) sin2 0d0. (4.5) 
BK s 4u2 

Measurement of the components of attenuation in different directions could be 
assumed to allow information on L(r,  0) to  be gathered. 

The authors attempted to get some idea of the average velocity profile of the 
superflow by analysing the Doppler shifts of their resonant peaks. This was 
complicated by the presence of the mylar strips which gave a splitting of the 
resonances even in the absence of rotation. Their results appear to show that the 
mean velocity profile of the superfluid has the classical value given by (1 .2)  even at  
rotation rates (5 revs/s) which correspond to a highly turbulent state of the fluid. 
There are not many classical measurements of the profile in turbulent flow : Taylor 
(1936), however, has reported detailed velocity profile measurements for a rotating 
outer cylinder. 

Experiments on second-sound attenuation of an azimuthal mode are shown in 
figure 21 ( a ,  b )  for a relatively wide gap d = 0.575 cm. Here we see the attenuation 
rising with breaks between which the attenuation can be approximated by straight 
lines. The critical velocities are called Q,, SZ,, SZ,, ... and correspond to our a,, 
Q,,, Q2,, . . . . The authors report that the number of thresholds increases with d,  with 3 
ford = 0.08 cm and 0.15 cm, 4 ford = 0.35 cm and 5 ford = 0.575 cm. Figure 22 ( a ,  b )  
shows the attenuation for d = 0.08 cm, where the first break 52, (figure 22b)  is 
interpreted by the authors as corresponding to the first appearance of vortices in the 
gap. 

The authors report a systematic investigation of these thresholds as a function of 
both temperature and gap size. They find that 52, and 52, have a weak temperature 
dependence, but Q3 is strongly temperature dependent. 52, disappears below 1.8 K. 

The authors suggest that SZ, corresponds to the appearance of an ' alley ' of vortices 
in the annulus of density n(S2,) = l/d2. They then argue that 52, varies inversely with 
d which explains why 52, is clearly visible only at  low values of d. (We advance a 
theory of the appearance of vortices in the gap in $4.8 below.) 

The observation that the mean velocity profile is consistent with (1.2) then 
prompts the authors to argue that between 52, and O,, v, = vs and that a uniform 
array of vortices appears in the channel as demonstrated by Bendt ($4.5). If the 
array is uniform then the attenuation of second sound between 52, and SZ, should 
theoretically be linear in 52 with a slope calculable from simple mutual friction 
theory. The observed attenuation is found to agree with the expected value. The 
observed ratio of these quantities gave an average of 0.92 kO.2 over a range of gap 
sizes from 0.08 cm to 0.575 cm and 1.65 K to 2.12 K. 

The authors calculate the ratio of the observed critical angular velocity Q1 to 
O,, the theoretical critical angular velocity for the uncoupled normal fluid, by 
comparison with the critical Taylor number for narrow gap for the normal fluid 
alone : 

Tu, = 2R1d3 - x 3400. (4.6) (3 
They find sZ,/sZT, averaged over temperature, ranges from 5 a t  d = 0.08 cm to 35 

a t  d = 0.575 cm. They conclude that the vortices, by coupling the two components, 
stabilize the normal fluid. This observation appears to confirm qualitatively the 
predictions of Chandrasekhar & Donnelly (1957). 

7-2 
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FIGURE 21. (a) Second-sound attenuation measured in the azimuthal direction by the 
resonant cavity method. Here R, = 2.075 cm, R, = 2.65 cm, d = 0.575 cm and T = 1.99 K. The 
detailed figure ( b )  does not show a region of zero attenuation. 

Some results for d = 5.75 mm are reported showing that the axial attenuation is 
greater than the transverse attenuation above R,, suggesting that the vortices are 
disorganized, and possibly anisotropic. 

The authors note that R, and Q, are independent of temperature and may be 
instabilities of the superfluid, while R, is strongly temperature dependent and 
perhaps is connected with an instability of the normal fluid. They attempt to 
correlate 52, with the Mamaladze-Matinyan criterion (see 94.9 below), but find that 
their data lie two orders of magnitude higher. Their critical velocities 51, are also 
much higher than those observed by Donnelly (table 3),  Snyder (table 5), and 
Heikkila & Hollis Hallett (table 2).  They are also much higher than a theoretical 
estimate which we give in $4.9 below. These comparisons suggest that the authors’ 
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FIQURE 22. (a) Second-sound attenuation measured in the azimuthal direction by the resonant 
cavity method. R, = 2.57 cm, R, = 2.65 cm, d = 0.08 cm, T = 1.86 K. The authors suggest that the 
first appearance of vortices can be seen in the detailed plot (b) ,  D,,, = 1660 (see table 6). 

attenuation sensitivity was not sufficient to observe the first entry of vortices in the 
annulus. 

It appears that it would be well worth repeating these interesting measurements 
with more sophisticated second-sound attenuation techniques such as are used for 
modern counterflow turbulence research (Swanson 1985). The cylinders in this 
research were not well designed for end effects, and observations of radial attenuation 
were actually done in a different apparatus. 

4.8. Entry of vortices between rotating cylinders 
The results on the first quanta of circulation and first entry of vortices in a uniformly 
rotating annulus were obtained by powerful free-energy minimization techniques, 
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R, R2 R, R, R, R* 
FIGURE 23. Distribution of flow of the two fluids in the annulus between concentric cylinders in the 
absence of quantized vortex lines ; 11 = 0.95. The distribution of the normal fluid is given by (1.2) 
and the superfluid is in potential flow arranged to match the normal-fluid velocity in the middle 
of the gap. The cases are given for six different values of y : (a )  y = 0 (the inner cylinder rotating) ; 
(b) 0.5; ( c )  0.9025 (potential flow); (d )  1 (solid-body rotation); (e) 5; ( f )  100. y = co corresponds to 
the outer cylinder rotating. 

discussed in the papers by Fetter (1966, 1967) and Stauffer & Fetter (1968). When 
Q, + Q2, the normal fluid is in shearing motion, and one would no longer expect the 
methods of equilibrium thermodynamics to be applicable. We shall explore in this 
section some ideas on vortex arrays that might appear at low rates of rotation in the 
presence of shear. 

We take our starting point from the discussion of the rotating annulus by Donnelly 
& Fetter (1966), referred to briefly in $3.2 above. Although the discussion concerned 
equilibrium flow in an annulus, strictly speaking there is relative motion of the 
normal and superfluids. To appreciate this one has only to examine figure 23. 
The velocity distributions of figure 23 are drawn on the following assumptions. The 
normal-fluid velocity is distributed according to (1.2) which is the sum of solid- 
body-rotation and potential-flow terms. By analogy with the ideas of Donnelly & 
Fetter (1966), the superfluid acquires circulation r = 27~0, R2 to match the velocity 
of the normal fluid midway between cylinders, and is otherwise distributed in 
potential flow, v, = r /2nr  within the annulus. Thus even in the solid-body rotation 
treated by Donnelly & Fetter (p = l), there is relative motion between normal and 
superfluid components, despite the fact that the normal fluid is free of shear. 

If we follow this hint from Donnelly & Fetter, we might speculate that in general 
vortices will appear when their presence can minimize the relative velocity between 
the two fluids, and ignore the shear motion of the normal fluid. A simple argument 
suggests how this might occur. For p > r2,  we have A > 0 and the vorticity w = 
2A > 0. A single row of vortices in the annulus will provide an increase in superfluid 
velocity ~ / 2 n d  tending to bring v, toward v,. So a criterion for this to  occur would 

Q , R 2 - ~ ,  =Q,R , - -  
be  for^ R, z R,) 

or 
R 

D 2 - D  >A ( A  > O ) .  ’ nd 

(4.7) 
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D* 
FIGURE 24. Boundaries indicated by dashed lines according to (4.9) for the entry of positive and 
negative vortices in the annulus between rotating cylinders. Potential flow is shown by the dotted 
line. The solid line corresponds to solid-body rotation, Ql = Q,, or D, = D,q2.  The intersection of 
the solid-body rotation and the criterion for entry of positive vortices reproduces Qo of $93.2 and 
3.3 above. There are no vortices in the region between dashed lines according to these ideas. 

For p < q2,  we have A < 0 and vorticity w = 2A < 0. A single row of vortices in the 
annulus will provide a decrease in superfluid velocity K/nd tending to bring v, down 
toward v,. Then the criterion would become 

or 

K 
Us-- 2 sZ, R, xd  

R 
nd 

D,-D, 2 2 ( A  < 0) .  

Building on the qualitative argument just given, Swanson & Donnelly (1987) have 
shown that the minimum free energy for vortices in a general flow between rotating 
cylinders is obtained by minimizing the average of ps(v,  - u,),. They find that a single 
row of vortices appears when IAJ > KL/nd2 where the logarithmic factor L = 
In (2d/xa) ,  and a second row when IAl > 1.85 KL/nd2.  They argue that this relation 
is valid anywhere in the ( D l ,  D,)-plane, that  is, even for counter-rotating cylinders. 
In  our notation their criterion reads 

(R, + R,) In (2dlna) 
nd ID, - 41 > (4.9) 

Equation (4.9) defines the boundaries for the entry of vortices in the annulus. 
These are shown by the dashed lines in figure 24. Thus the primary (i.e. unperturbed) 
state in the lower triangle contains positive vortices, and the primary state in the 
upper triangle contains negative vortices. Along the dotted potential-flow line and 
indeed between dashed lines, no vortices enter the annulus. 

Solid-body rotation is indicated by the solid line in figure 24, i.e. D, = D, 7'. When 
this criterion is combined with (4.9), we find the condition for entry of vortices in an 
annulus in solid-body rotation is 

(4.10) 

which recovers (3.7) for 0,. 
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4.9. Stability theories 
Mamaladze & Matinyan (1963) recognized that if the flow of helium I1 between 
concentric cylinders involves an array of vortices, the tension in these vortices 
themselves would provide a restoring force for a displaced element of fluid. They then 
argued that the Rayleigh criterion would be modified in the direction of extra 
stability. 

Their calculations proceeded in the same spirit as those of Lord Rayleigh (cf. 
Chandrasekhar 1961, $866, 67). The situation is considered a t  absolute zero where 
there is no viscosity. They assumed that the vortex lines in the annulus are dense 
enough to allow continuum calculations, and assumed further that the distribution 
of the superfluid velocity is that  of a viscous fluid (see (1.2)). They used the equation 
of motion of the rotating superfluid first advanced by Hall (1960) 

-+ (u , .V)V ,+V,  av, 
at 

(4.11) 

divu = 0 ,  

a t  r = R, and R,, u, = 0 

where v, = e ’ / p s K ,  e being the tension (energy per unit length) of a vortex filament, 
e = ips K ,  In (d la ) .  Making small perturbations about the equilibrium state, they 
derived a stability criterion which they suggested should replace Rayleigh’s for 
helium 11. 

Recently, Barenghi & Jones (1987) have reconsidered the stability problem in the 
light of the experiments discussed in this paper. They have begun their work by 
examining the effect of vortex tension in the pure superfluid : the problems of finite 
temperature, including vortex tension, mutual friction and normal fluid viscosity are 
quite complicated. 

Barenghi & Jones note first that Mamaladze & Matinyan failed to realize that A 
can be positive or negative depending on Ql and Q, (see figure 24). Thus their 
equations for the perturbed velocities are not correct. In addition, Barenghi & Jones 
allow for non-axisymmetric perturbations : Mamaladze & Matinyan, following 
Chandrasekhar & Donnelly assumed that the first modes to become unstable are 
axisymmetric. Barenghi & Jones find that when the inner cylinder rotates, the onset 
of non-axisymmetric modes occurs at a lower velocity than for axisymnetric modes, 
and these long-wavelength axial modes reduce the critical velocity to zero. Further 
they find that non-axisymmetric modes of long wavelength can be unstable when the 
outer cylinder is rotating, in qualitative agreement with our conclusion of $4.4. The 
situation a t  finite temperature will be expected to involve the normal fluid, which 
will select the azimuthal and axial wavenumbers for which the flow is unstable with 
lowest D, and D,. 

4.10. Discussion and outlook 
A rotating-cylinder viscometer is an absolute instrument for determining shear 
viscosity. The instability phenomena described here show that for helium I1 the 
design of such an instrument, which must be sensitive enough to reach the stable flow 
region, is restricted by the requirement for reaching the very low velocities of either 
cylinder for stable flow. These problems are described by us in a further paper 
(Donnelly & LaMar 1987). 
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The method of finding the equilibrium distribution of circulation and vortices in 
a rotating container has usually been investigated by free-energy minimization. 
Owing to the circumstances that Couette flow is a combination of solid-body rotation 
and potential flow, we have shown that free-energy methods may be extended to 
general flows between rotating cylinders to find the equilibrium state even in the 
presence of shear. 

When the cylinders are rotating sufficiently slowly the normal fluid will be in 
Couette flow and the superfluid in potential flow (except perhaps for end effects). At 
some critical rotation rate, quantized vortices enter the flow. An experimental 
investigation by second-sound attenuation should establish whether our arguments 
in $4.8 and the specific result of Swanson & Donnelly (1987) given by (4.9) are 
correct. Note that (4.9) should be valid for the cases in which outer and inner 
cylinders are rotating in the same or opposite directions. 

The more challenging problem of finding the stability of the states just discussed 
is evolving rapidly. On the theoretical side it appears that it will now be profitable 
to try to solve the full equations of motion for the stability of the flow of helium 11. 
One important problem will be whether the average number of vortices N ,  across the 
gap will be large enough to justify treating the vortices as a continuum. We see from 
the tables that N ,  can be as small as 3. The choice of gap size will influence this 
problem, and an instability calculation at  finite temperatures would be of further 
assistance in selecting an experimental design. On the experimental side, there is 
every indication that second-sound attenuation will prove to be a powerful tool in 
exploring the modes of instability in the flow between concentric rotating cylinders. 
In  doing so, the complications mentioned in $ 1.3 in studying classical flows shold be 
kept in mind. Allowable ramping rates, preferred aspect ratios, optimum end 
conditions and multiplicity of states should be carefully investigated as they may be 
considerably different in the flow of helium I1 than in classical flows. 

Once instability sets in, it is not clear how much information on the resulting 
nonlinear flow can be obtained by second-sound attenuation. Here again, the 
rotating-cylinder viscometer may become a powerful tool for further progress and 
insight. Such an instrument would be a fitting continuation of the tradition 
established a century ago by Mallock and Couette. 

Looking even further ahead, the experiments discussed here are capable of 
interesting variations. Temperature gradients between the top and bottom of the 
cylinders (the Kapitza experiment of $2.1), or between the inner and outer cylinders 
will alter the basic state and create new phenomena for study. There is much to be 
gained from such a study: the two-fluid theory of helium I1 with rotation and 
vortices present has had much theoretical but limited experimental attention. The 
study of the stability of such flows is perhaps the most rigorous test of the validity 
of the equations of motion and boundary conditions one can devise. 

We are grateful to Paul Roberts, Charles Swanson, Christopher Jones and Carlo 
Barenghi for comments on a draft of this paper. We are also grateful to Charles 
Swanson, Carlo Barenghi and Christopher Jones for their new calculations. This 
research was supported by the National Science Foundation Low Temperature 
Physics Program under grant DMR 83-13487 and the Fluid Mechanics Program 
under grant MSM 81 - 17569. 
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